文档

API

工具使用

使大型语言模型 (LLM) 能够与外部函数和 API 交互。

工具使用通过 LM Studio 的 REST API(或任何 OpenAI 客户端)的 /v1/chat/completions 端点,使 LLM 能够请求调用外部函数和 API。这大大扩展了它们的功能,远超文本输出。


快速开始

1. 启动 LM Studio 作为服务器

要从您自己的代码以编程方式使用 LM Studio,请将 LM Studio 作为本地服务器运行。

您可以从 LM Studio 的“开发人员”选项卡或通过 lms CLI 打开服务器。

lms server start
通过运行 npx lmstudio install-cli 安装 lms

这将允许您通过类似 OpenAI 的 REST API 与 LM Studio 交互。有关 LM Studio 类似 OpenAI API 的介绍,请参阅将 LM Studio 作为服务器运行

2. 加载模型

您可以从 LM Studio 的“聊天”或“开发人员”选项卡加载模型,或通过 lms CLI 加载。

lms load

3. 复制、粘贴并运行示例!


工具使用

“工具使用”到底是什么?

工具使用描述了

  • LLM 输出请求调用函数的文本(LLM 不能直接执行代码)
  • 您的代码执行这些函数
  • 您的代码将结果反馈给 LLM。

高级流程

┌──────────────────────────┐
│ SETUP: LLM + Tool list   │
└──────────┬───────────────┘

┌──────────────────────────┐
│    Get user input        │◄────┐
└──────────┬───────────────┘     │
           ▼                     │
┌──────────────────────────┐     │
│ LLM prompted w/messages  │     │
└──────────┬───────────────┘     │
           ▼                     │
     Needs tools?                │
      │         │                │
    Yes         No               │
      │         │                │
      ▼         └────────────┐   │
┌─────────────┐              │   │
│Tool Response│              │   │
└──────┬──────┘              │   │
       ▼                     │   │
┌─────────────┐              │   │
│Execute tools│              │   │
└──────┬──────┘              │   │
       ▼                     ▼   │
┌─────────────┐          ┌───────────┐
│Add results  │          │  Normal   │
│to messages  │          │ response  │
└──────┬──────┘          └─────┬─────┘
       │                       ▲
       └───────────────────────┘

深入流程

LM Studio 通过 /v1/chat/completions 端点支持工具使用,当在请求正文的 tools 参数中给出函数定义时。工具被指定为函数定义数组,描述其参数和用法,例如

它遵循 OpenAI 函数调用 API 的相同格式,并期望通过 OpenAI 客户端 SDK 工作。

在此示例流程中,我们将使用 lmstudio-community/Qwen2.5-7B-Instruct-GGUF 作为模型。

  • 您向 LLM 提供工具列表。这些是模型可以 请求 调用的工具。例如

    // the list of tools is model-agnostic
    [
      {
        "type": "function",
        "function": {
          "name": "get_delivery_date",
          "description": "Get the delivery date for a customer's order",
          "parameters": {
            "type": "object",
            "properties": {
              "order_id": {
                "type": "string"
              }
            },
            "required": ["order_id"]
          }
        }
      }
    ]
    

    此列表将根据模型的聊天模板注入到模型的 system 提示中。对于 Qwen2.5-Instruct,它看起来像

    <|im_start|>system
    You are Qwen, created by Alibaba Cloud. You are a helpful assistant.
    
    # Tools
    
    You may call one or more functions to assist with the user query.
    
    You are provided with function signatures within <tools></tools> XML tags:
    <tools>
    {"type": "function", "function": {"name": "get_delivery_date", "description": "Get the delivery date for a customer's order", "parameters": {"type": "object", "properties": {"order_id": {"type": "string"}}, "required": ["order_id"]}}}
    </tools>
    
    For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
    <tool_call>
    {"name": <function-name>, "arguments": <args-json-object>}
    </tool_call><|im_end|>
    

    重要提示:模型只能 请求 调用这些工具,因为 LLM 不能 直接调用函数、API 或任何其他工具。它们只能输出文本,然后可以解析该文本以编程方式调用函数。

  • 在收到提示后,LLM 可以决定是

    • (a) 调用一个或多个工具
    User: Get me the delivery date for order 123
    Model: <tool_call>
    {"name": "get_delivery_date", "arguments": {"order_id": "123"}}
    </tool_call>
    
    • (b) 正常响应
    User: Hi
    Model: Hello! How can I assist you today?
    
  • LM Studio 将模型的文本输出解析为符合 OpenAI 规范的 chat.completion 响应对象。

    • 如果模型被授予访问 tools 的权限,LM Studio 将尝试将工具调用解析到 chat.completion 响应对象的 response.choices[0].message.tool_calls 字段中。
    • 如果 LM Studio 无法解析任何正确格式化的工具调用,它将直接将响应返回到标准 response.choices[0].message.content 字段。
    • 注意:较小的模型和未针对工具使用进行训练的模型可能会输出格式不正确的工具调用,导致 LM Studio 无法将其解析到 tool_calls 字段中。这对于在未按预期收到 tool_calls 时进行故障排除很有用。格式不正确的 Qwen2.5-Instruct 工具调用示例
    <tool_call>
    ["name": "get_delivery_date", function: "date"]
    </tool_call>
    

    请注意,括号不正确,并且调用不遵循 name, argument 格式。

  • 您的代码解析 chat.completion 响应以检查模型发出的工具调用,然后使用模型指定的参数调用相应的工具。您的代码然后添加两者

    • 模型的工具调用消息
    • 工具调用的结果

    messages 数组中,以发送回模型

    # pseudocode, see examples for copy-paste snippets
    if response.has_tool_calls:
        for each tool_call:
            # Extract function name & args
            function_to_call = tool_call.name     # e.g. "get_delivery_date"
            args = tool_call.arguments            # e.g. {"order_id": "123"}
    
            # Execute the function
            result = execute_function(function_to_call, args)
    
            # Add result to conversation
            add_to_messages([
                ASSISTANT_TOOL_CALL_MESSAGE,      # The request to use the tool
                TOOL_RESULT_MESSAGE               # The tool's response
            ])
    else:
        # Normal response without tools
        add_to_messages(response.content)
    
  • 然后,LLM 会使用更新后的消息数组再次收到提示,但不再能够访问工具。这是因为

    • LLM 已经将工具结果存储在对话历史中
    • 我们希望 LLM 向用户提供最终响应,而不是调用更多工具
    # Example messages
    messages = [
        {"role": "user", "content": "When will order 123 be delivered?"},
        {"role": "assistant", "function_call": {
            "name": "get_delivery_date",
            "arguments": {"order_id": "123"}
        }},
        {"role": "tool", "content": "2024-03-15"},
    ]
    response = client.chat.completions.create(
        model="lmstudio-community/qwen2.5-7b-instruct",
        messages=messages
    )
    

    此调用后的 response.choices[0].message.content 字段可能如下所示

    Your order #123 will be delivered on March 15th, 2024
    
  • 循环回到流程的第 2 步继续

注意:这是工具使用的严谨流程。但是,您可以根据您的用例对此流程进行实验。


支持的模型

通过 LM Studio,所有模型都至少支持某种程度的工具使用。

但是,目前有两种支持级别可能会影响体验质量:原生和默认。

具有原生工具使用支持的模型将在应用程序中带有锤子徽章,并且在工具使用场景中通常表现更好。

原生工具使用支持

“原生”工具使用支持意味着两者兼备

  • 模型有一个支持工具使用的聊天模板(通常意味着该模型已针对工具使用进行训练)
  • LM Studio 支持该模型的工具使用格式
    • LM Studio 需要此功能才能将聊天历史记录正确输入到聊天模板中,并将模型输出的工具调用解析为 chat.completion 对象

目前在 LM Studio 中具有原生工具使用支持的模型(可能会有变化)

默认工具使用支持

“默认”工具使用支持意味着要么

  • 模型没有支持工具使用的聊天模板(通常意味着该模型尚未针对工具使用进行训练)
  • LM Studio 目前不支持该模型的工具使用格式

在底层,默认工具使用通过以下方式工作

  • 为模型提供自定义系统提示和默认工具调用格式
  • tool 角色消息转换为 user 角色,以便没有 tool 角色的聊天模板也兼容
  • assistant 角色 tool_calls 转换为默认工具调用格式

结果将因模型而异。

您可以通过在终端中运行 lms log stream,然后向不支持原生工具使用的模型发送带有 tools 的聊天完成请求来查看默认格式。默认格式可能会更改。

展开以查看默认工具使用格式的示例
 % lms log stream
Streaming logs from LM Studio

timestamp: 11/13/2024, 9:35:15 AM
type: llm.prediction.input
modelIdentifier: gemma-2-2b-it
modelPath: lmstudio-community/gemma-2-2b-it-GGUF/gemma-2-2b-it-Q4_K_M.gguf
input: "<start_of_turn>system
You are a tool-calling AI. You can request calls to available tools with this EXACT format:
[TOOL_REQUEST]{"name": "tool_name", "arguments": {"param1": "value1"}}[END_TOOL_REQUEST]

AVAILABLE TOOLS:
{
  "type": "toolArray",
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_delivery_date",
        "description": "Get the delivery date for a customer's order",
        "parameters": {
          "type": "object",
          "properties": {
            "order_id": {
              "type": "string"
            }
          },
          "required": [
            "order_id"
          ]
        }
      }
    }
  ]
}

RULES:
- Only use tools from AVAILABLE TOOLS
- Include all required arguments
- Use one [TOOL_REQUEST] block per tool
- Never use [TOOL_RESULT]
- If you decide to call one or more tools, there should be no other text in your message

Examples:
"Check Paris weather"
[TOOL_REQUEST]{"name": "get_weather", "arguments": {"location": "Paris"}}[END_TOOL_REQUEST]

"Send email to John about meeting and open browser"
[TOOL_REQUEST]{"name": "send_email", "arguments": {"to": "John", "subject": "meeting"}}[END_TOOL_REQUEST]
[TOOL_REQUEST]{"name": "open_browser", "arguments": {}}[END_TOOL_REQUEST]

Respond conversationally if no matching tools exist.<end_of_turn>
<start_of_turn>user
Get me delivery date for order 123<end_of_turn>
<start_of_turn>model
"

如果模型严格遵循此格式调用工具,即

[TOOL_REQUEST]{"name": "get_delivery_date", "arguments": {"order_id": "123"}}[END_TOOL_REQUEST]

那么 LM Studio 将能够将这些工具调用解析到 chat.completions 对象中,就像原生支持的模型一样。

所有不具备原生工具使用支持的模型都将具备默认工具使用支持。


使用 curl 的示例

此示例演示了模型如何使用 curl 工具请求工具调用。

要在 Mac 或 Linux 上运行此示例,请使用任何终端。在 Windows 上,使用 Git Bash

curl https://:1234/v1/chat/completions \
  -H "Content-Type: application/json" \
  -d '{
    "model": "lmstudio-community/qwen2.5-7b-instruct",
    "messages": [{"role": "user", "content": "What dell products do you have under $50 in electronics?"}],
    "tools": [
      {
        "type": "function",
        "function": {
          "name": "search_products",
          "description": "Search the product catalog by various criteria. Use this whenever a customer asks about product availability, pricing, or specifications.",
          "parameters": {
            "type": "object",
            "properties": {
              "query": {
                "type": "string",
                "description": "Search terms or product name"
              },
              "category": {
                "type": "string",
                "description": "Product category to filter by",
                "enum": ["electronics", "clothing", "home", "outdoor"]
              },
              "max_price": {
                "type": "number",
                "description": "Maximum price in dollars"
              }
            },
            "required": ["query"],
            "additionalProperties": false
          }
        }
      }
    ]
  }'

/v1/chat/completions 识别的所有参数都将得到遵守,并且可用工具数组应在 tools 字段中提供。

如果模型认为用户消息最适合通过工具调用来完成,则会在响应字段 choices[0].message.tool_calls 中提供一个工具调用请求对象数组。

顶级响应对象的 finish_reason 字段也将填充为 "tool_calls"

上述 curl 请求的示例响应将如下所示

{
  "id": "chatcmpl-gb1t1uqzefudice8ntxd9i",
  "object": "chat.completion",
  "created": 1730913210,
  "model": "lmstudio-community/qwen2.5-7b-instruct",
  "choices": [
    {
      "index": 0,
      "logprobs": null,
      "finish_reason": "tool_calls",
      "message": {
        "role": "assistant",
        "tool_calls": [
          {
            "id": "365174485",
            "type": "function",
            "function": {
              "name": "search_products",
              "arguments": "{\"query\":\"dell\",\"category\":\"electronics\",\"max_price\":50}"
            }
          }
        ]
      }
    }
  ],
  "usage": {
    "prompt_tokens": 263,
    "completion_tokens": 34,
    "total_tokens": 297
  },
  "system_fingerprint": "lmstudio-community/qwen2.5-7b-instruct"
}

简单来说,上述回应可以理解为模型说:

"请调用 search_products 函数,参数为

  • query 参数为 'dell',
  • category 参数为 'electronics'
  • max_price 参数为 '50'

并将结果返回给我"

需要解析 tool_calls 字段以调用实际函数/API。以下示例演示了如何操作。


使用 python 的示例

工具使用与 Python 等编程语言结合使用时效果最佳,您可以在其中实现 tools 字段中指定的函数,以便在模型请求时以编程方式调用它们。

单轮示例

下面是一个简单的单轮(模型只被调用一次)示例,它使模型能够调用一个名为 say_hello 的函数,该函数会向控制台打印一个问候语。

single-turn-example.py

from openai import OpenAI

# Connect to LM Studio
client = OpenAI(base_url="https://:1234/v1", api_key="lm-studio")

# Define a simple function
def say_hello(name: str) → str:
    print(f"Hello, {name}!")

# Tell the AI about our function
tools = [
    {
        "type": "function",
        "function": {
            "name": "say_hello",
            "description": "Says hello to someone",
            "parameters": {
                "type": "object",
                "properties": {
                    "name": {
                        "type": "string",
                        "description": "The person's name"
                    }
                },
                "required": ["name"]
            }
        }
    }
]

# Ask the AI to use our function
response = client.chat.completions.create(
    model="lmstudio-community/qwen2.5-7b-instruct",
    messages=[{"role": "user", "content": "Can you say hello to Bob the Builder?"}],
    tools=tools
)

# Get the name the AI wants to use a tool to say hello to
# (Assumes the AI has requested a tool call and that tool call is say_hello)
tool_call = response.choices[0].message.tool_calls[0]
name = eval(tool_call.function.arguments)["name"]

# Actually call the say_hello function
say_hello(name) # Prints: Hello, Bob the Builder!

从控制台运行此脚本应产生以下结果

→ % python single-turn-example.py
Hello, Bob the Builder!

更改以下名称:

messages=[{"role": "user", "content": "Can you say hello to Bob the Builder?"}]

查看模型如何使用不同的名称调用 say_hello 函数。

多轮示例

现在来看一个稍微复杂一点的例子。

在此示例中,我们将

  • 启用模型调用 get_delivery_date 函数
  • 将调用该函数的结果返回给模型,以便它可以用纯文本满足用户的请求
multi-turn-example.py(点击展开)
from datetime import datetime, timedelta
import json
import random
from openai import OpenAI

# Point to the local server
client = OpenAI(base_url="https://:1234/v1", api_key="lm-studio")
model = "lmstudio-community/qwen2.5-7b-instruct"


def get_delivery_date(order_id: str) → datetime:
    # Generate a random delivery date between today and 14 days from now
    # in a real-world scenario, this function would query a database or API
    today = datetime.now()
    random_days = random.randint(1, 14)
    delivery_date = today + timedelta(days=random_days)
    print(
        f"\nget_delivery_date function returns delivery date:\n\n{delivery_date}",
        flush=True,
    )
    return delivery_date


tools = [
    {
        "type": "function",
        "function": {
            "name": "get_delivery_date",
            "description": "Get the delivery date for a customer's order. Call this whenever you need to know the delivery date, for example when a customer asks 'Where is my package'",
            "parameters": {
                "type": "object",
                "properties": {
                    "order_id": {
                        "type": "string",
                        "description": "The customer's order ID.",
                    },
                },
                "required": ["order_id"],
                "additionalProperties": False,
            },
        },
    }
]

messages = [
    {
        "role": "system",
        "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user.",
    },
    {
        "role": "user",
        "content": "Give me the delivery date and time for order number 1017",
    },
]

# LM Studio
response = client.chat.completions.create(
    model=model,
    messages=messages,
    tools=tools,
)

print("\nModel response requesting tool call:\n", flush=True)
print(response, flush=True)

# Extract the arguments for get_delivery_date
# Note this code assumes we have already determined that the model generated a function call.
tool_call = response.choices[0].message.tool_calls[0]
arguments = json.loads(tool_call.function.arguments)

order_id = arguments.get("order_id")

# Call the get_delivery_date function with the extracted order_id
delivery_date = get_delivery_date(order_id)

assistant_tool_call_request_message = {
    "role": "assistant",
    "tool_calls": [
        {
            "id": response.choices[0].message.tool_calls[0].id,
            "type": response.choices[0].message.tool_calls[0].type,
            "function": response.choices[0].message.tool_calls[0].function,
        }
    ],
}

# Create a message containing the result of the function call
function_call_result_message = {
    "role": "tool",
    "content": json.dumps(
        {
            "order_id": order_id,
            "delivery_date": delivery_date.strftime("%Y-%m-%d %H:%M:%S"),
        }
    ),
    "tool_call_id": response.choices[0].message.tool_calls[0].id,
}

# Prepare the chat completion call payload
completion_messages_payload = [
    messages[0],
    messages[1],
    assistant_tool_call_request_message,
    function_call_result_message,
]

# Call the OpenAI API's chat completions endpoint to send the tool call result back to the model
# LM Studio
response = client.chat.completions.create(
    model=model,
    messages=completion_messages_payload,
)

print("\nFinal model response with knowledge of the tool call result:\n", flush=True)
print(response.choices[0].message.content, flush=True)

从控制台运行此脚本应产生以下结果

→ % python multi-turn-example.py

Model response requesting tool call:

ChatCompletion(id='chatcmpl-wwpstqqu94go4hvclqnpwn', choices=[Choice(finish_reason='tool_calls', index=0, logprobs=None, message=ChatCompletionMessage(content=None, refusal=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='377278620', function=Function(arguments='{"order_id":"1017"}', name='get_delivery_date'), type='function')]))], created=1730916196, model='lmstudio-community/qwen2.5-7b-instruct', object='chat.completion', service_tier=None, system_fingerprint='lmstudio-community/qwen2.5-7b-instruct', usage=CompletionUsage(completion_tokens=24, prompt_tokens=223, total_tokens=247, completion_tokens_details=None, prompt_tokens_details=None))

get_delivery_date function returns delivery date:

2024-11-19 13:03:17.773298

Final model response with knowledge of the tool call result:

Your order number 1017 is scheduled for delivery on November 19, 2024, at 13:03 PM.

高级代理示例

在上述原则的基础上,我们可以将 LM Studio 模型与本地定义的函数相结合,创建一个“代理”——一个将语言模型与自定义函数配对的系统,以理解请求并执行超出基本文本生成的动作。

以下示例中的代理可以

  • 在您的默认浏览器中打开安全网址
  • 检查当前时间
  • 分析文件系统中的目录
agent-chat-example.py(点击展开)
import json
from urllib.parse import urlparse
import webbrowser
from datetime import datetime
import os
from openai import OpenAI

# Point to the local server
client = OpenAI(base_url="https://:1234/v1", api_key="lm-studio")
model = "lmstudio-community/qwen2.5-7b-instruct"


def is_valid_url(url: str) → bool:

    try:
        result = urlparse(url)
        return bool(result.netloc)  # Returns True if there's a valid network location
    except Exception:
        return False


def open_safe_url(url: str) → dict:
    # List of allowed domains (expand as needed)
    SAFE_DOMAINS = {
        "lmstudio.ai",
        "github.com",
        "google.com",
        "wikipedia.org",
        "weather.com",
        "stackoverflow.com",
        "python.org",
        "docs.python.org",
    }

    try:
        # Add http:// if no scheme is present
        if not url.startswith(('http://', 'https://')):
            url = 'http://' + url

        # Validate URL format
        if not is_valid_url(url):
            return {"status": "error", "message": f"Invalid URL format: {url}"}

        # Parse the URL and check domain
        parsed_url = urlparse(url)
        domain = parsed_url.netloc.lower()
        base_domain = ".".join(domain.split(".")[-2:])

        if base_domain in SAFE_DOMAINS:
            webbrowser.open(url)
            return {"status": "success", "message": f"Opened {url} in browser"}
        else:
            return {
                "status": "error",
                "message": f"Domain {domain} not in allowed list",
            }
    except Exception as e:
        return {"status": "error", "message": str(e)}


def get_current_time() → dict:
    """Get the current system time with timezone information"""
    try:
        current_time = datetime.now()
        timezone = datetime.now().astimezone().tzinfo
        formatted_time = current_time.strftime("%Y-%m-%d %H:%M:%S %Z")
        return {
            "status": "success",
            "time": formatted_time,
            "timezone": str(timezone),
            "timestamp": current_time.timestamp(),
        }
    except Exception as e:
        return {"status": "error", "message": str(e)}


def analyze_directory(path: str = ".") → dict:
    """Count and categorize files in a directory"""
    try:
        stats = {
            "total_files": 0,
            "total_dirs": 0,
            "file_types": {},
            "total_size_bytes": 0,
        }

        for entry in os.scandir(path):
            if entry.is_file():
                stats["total_files"] += 1
                ext = os.path.splitext(entry.name)[1].lower() or "no_extension"
                stats["file_types"][ext] = stats["file_types"].get(ext, 0) + 1
                stats["total_size_bytes"] += entry.stat().st_size
            elif entry.is_dir():
                stats["total_dirs"] += 1
                # Add size of directory contents
                for root, _, files in os.walk(entry.path):
                    for file in files:
                        try:
                            stats["total_size_bytes"] += os.path.getsize(os.path.join(root, file))
                        except (OSError, FileNotFoundError):
                            continue

        return {"status": "success", "stats": stats, "path": os.path.abspath(path)}
    except Exception as e:
        return {"status": "error", "message": str(e)}


tools = [
    {
        "type": "function",
        "function": {
            "name": "open_safe_url",
            "description": "Open a URL in the browser if it's deemed safe",
            "parameters": {
                "type": "object",
                "properties": {
                    "url": {
                        "type": "string",
                        "description": "The URL to open",
                    },
                },
                "required": ["url"],
            },
        },
    },
    {
        "type": "function",
        "function": {
            "name": "get_current_time",
            "description": "Get the current system time with timezone information",
            "parameters": {
                "type": "object",
                "properties": {},
                "required": [],
            },
        },
    },
    {
        "type": "function",
        "function": {
            "name": "analyze_directory",
            "description": "Analyze the contents of a directory, counting files and folders",
            "parameters": {
                "type": "object",
                "properties": {
                    "path": {
                        "type": "string",
                        "description": "The directory path to analyze. Defaults to current directory if not specified.",
                    },
                },
                "required": [],
            },
        },
    },
]


def process_tool_calls(response, messages):
    """Process multiple tool calls and return the final response and updated messages"""
    # Get all tool calls from the response
    tool_calls = response.choices[0].message.tool_calls

    # Create the assistant message with tool calls
    assistant_tool_call_message = {
        "role": "assistant",
        "tool_calls": [
            {
                "id": tool_call.id,
                "type": tool_call.type,
                "function": tool_call.function,
            }
            for tool_call in tool_calls
        ],
    }

    # Add the assistant's tool call message to the history
    messages.append(assistant_tool_call_message)

    # Process each tool call and collect results
    tool_results = []
    for tool_call in tool_calls:
        # For functions with no arguments, use empty dict
        arguments = (
            json.loads(tool_call.function.arguments)
            if tool_call.function.arguments.strip()
            else {}
        )

        # Determine which function to call based on the tool call name
        if tool_call.function.name == "open_safe_url":
            result = open_safe_url(arguments["url"])
        elif tool_call.function.name == "get_current_time":
            result = get_current_time()
        elif tool_call.function.name == "analyze_directory":
            path = arguments.get("path", ".")
            result = analyze_directory(path)
        else:
            # llm tried to call a function that doesn't exist, skip
            continue

        # Add the result message
        tool_result_message = {
            "role": "tool",
            "content": json.dumps(result),
            "tool_call_id": tool_call.id,
        }
        tool_results.append(tool_result_message)
        messages.append(tool_result_message)

    # Get the final response
    final_response = client.chat.completions.create(
        model=model,
        messages=messages,
    )

    return final_response


def chat():
    messages = [
        {
            "role": "system",
            "content": "You are a helpful assistant that can open safe web links, tell the current time, and analyze directory contents. Use these capabilities whenever they might be helpful.",
        }
    ]

    print(
        "Assistant: Hello! I can help you open safe web links, tell you the current time, and analyze directory contents. What would you like me to do?"
    )
    print("(Type 'quit' to exit)")

    while True:
        # Get user input
        user_input = input("\nYou: ").strip()

        # Check for quit command
        if user_input.lower() == "quit":
            print("Assistant: Goodbye!")
            break

        # Add user message to conversation
        messages.append({"role": "user", "content": user_input})

        try:
            # Get initial response
            response = client.chat.completions.create(
                model=model,
                messages=messages,
                tools=tools,
            )

            # Check if the response includes tool calls
            if response.choices[0].message.tool_calls:
                # Process all tool calls and get final response
                final_response = process_tool_calls(response, messages)
                print("\nAssistant:", final_response.choices[0].message.content)

                # Add assistant's final response to messages
                messages.append(
                    {
                        "role": "assistant",
                        "content": final_response.choices[0].message.content,
                    }
                )
            else:
                # If no tool call, just print the response
                print("\nAssistant:", response.choices[0].message.content)

                # Add assistant's response to messages
                messages.append(
                    {
                        "role": "assistant",
                        "content": response.choices[0].message.content,
                    }
                )

        except Exception as e:
            print(f"\nAn error occurred: {str(e)}")
            exit(1)


if __name__ == "__main__":
    chat()

从控制台运行此脚本将允许您与代理聊天

→ % python agent-example.py
Assistant: Hello! I can help you open safe web links, tell you the current time, and analyze directory contents. What would you like me to do?
(Type 'quit' to exit)

You: What time is it?

Assistant: The current time is 14:11:40 (EST) as of November 6, 2024.

You: What time is it now?

Assistant: The current time is 14:13:59 (EST) as of November 6, 2024.

You: Open lmstudio.ai

Assistant: The link to lmstudio.ai has been opened in your default web browser.

You: What's in my current directory?

Assistant: Your current directory at `/Users/matt/project` contains a total of 14 files and 8 directories. Here's the breakdown:

- Files without an extension: 3
- `.mjs` files: 2
- `.ts` (TypeScript) files: 3
- Markdown (`md`) file: 1
- JSON files: 4
- TOML file: 1

The total size of these items is 1,566,990,604 bytes.

You: Thank you!

Assistant: You're welcome! If you have any other questions or need further assistance, feel free to ask.

You:

流式传输

当通过 /v1/chat/completions 进行流式传输时 (stream=true),工具调用会分块发送。函数名称和参数通过 chunk.choices[0].delta.tool_calls.function.namechunk.choices[0].delta.tool_calls.function.arguments 分段发送。

例如,要调用 get_current_weather(location="San Francisco"),每个 chunk.choices[0].delta.tool_calls[0] 对象中的流式 ChoiceDeltaToolCall 将如下所示

ChoiceDeltaToolCall(index=0, id='814890118', function=ChoiceDeltaToolCallFunction(arguments='', name='get_current_weather'), type='function')
ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{"', name=None), type=None)
ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='location', name=None), type=None)
ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='":"', name=None), type=None)
ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='San Francisco', name=None), type=None)
ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='"}', name=None), type=None)

这些分块必须在整个流中累积,才能形成完整的函数签名以供执行。

下面的示例展示了如何通过 /v1/chat/completions 流式端点(stream=true)创建一个简单的工具增强聊天机器人。

tool-streaming-chatbot.py(点击展开)
from openai import OpenAI
import time

client = OpenAI(base_url="http://127.0.0.1:1234/v1", api_key="lm-studio")
MODEL = "lmstudio-community/qwen2.5-7b-instruct"

TIME_TOOL = {
    "type": "function",
    "function": {
        "name": "get_current_time",
        "description": "Get the current time, only if asked",
        "parameters": {"type": "object", "properties": {}},
    },
}

def get_current_time():
    return {"time": time.strftime("%H:%M:%S")}

def process_stream(stream, add_assistant_label=True):
    """Handle streaming responses from the API"""
    collected_text = ""
    tool_calls = []
    first_chunk = True

    for chunk in stream:
        delta = chunk.choices[0].delta

        # Handle regular text output
        if delta.content:
            if first_chunk:
                print()
                if add_assistant_label:
                    print("Assistant:", end=" ", flush=True)
                first_chunk = False
            print(delta.content, end="", flush=True)
            collected_text += delta.content

        # Handle tool calls
        elif delta.tool_calls:
            for tc in delta.tool_calls:
                if len(tool_calls) <= tc.index:
                    tool_calls.append({
                        "id": "", "type": "function",
                        "function": {"name": "", "arguments": ""}
                    })
                tool_calls[tc.index] = {
                    "id": (tool_calls[tc.index]["id"] + (tc.id or "")),
                    "type": "function",
                    "function": {
                        "name": (tool_calls[tc.index]["function"]["name"] + (tc.function.name or "")),
                        "arguments": (tool_calls[tc.index]["function"]["arguments"] + (tc.function.arguments or ""))
                    }
                }
    return collected_text, tool_calls

def chat_loop():
    messages = []
    print("Assistant: Hi! I am an AI agent empowered with the ability to tell the current time (Type 'quit' to exit)")

    while True:
        user_input = input("\nYou: ").strip()
        if user_input.lower() == "quit":
            break

        messages.append({"role": "user", "content": user_input})

        # Get initial response
        response_text, tool_calls = process_stream(
            client.chat.completions.create(
                model=MODEL,
                messages=messages,
                tools=[TIME_TOOL],
                stream=True,
                temperature=0.2
            )
        )

        if not tool_calls:
            print()

        text_in_first_response = len(response_text) > 0
        if text_in_first_response:
            messages.append({"role": "assistant", "content": response_text})

        # Handle tool calls if any
        if tool_calls:
            tool_name = tool_calls[0]["function"]["name"]
            print()
            if not text_in_first_response:
                print("Assistant:", end=" ", flush=True)
            print(f"**Calling Tool: {tool_name}**")
            messages.append({"role": "assistant", "tool_calls": tool_calls})

            # Execute tool calls
            for tool_call in tool_calls:
                if tool_call["function"]["name"] == "get_current_time":
                    result = get_current_time()
                    messages.append({
                        "role": "tool",
                        "content": str(result),
                        "tool_call_id": tool_call["id"]
                    })

            # Get final response after tool execution
            final_response, _ = process_stream(
                client.chat.completions.create(
                    model=MODEL,
                    messages=messages,
                    stream=True
                ),
                add_assistant_label=False
            )

            if final_response:
                print()
                messages.append({"role": "assistant", "content": final_response})

if __name__ == "__main__":
    chat_loop()

您可以通过从控制台运行此脚本来与机器人聊天

→ % python tool-streaming-chatbot.py
Assistant: Hi! I am an AI agent empowered with the ability to tell the current time (Type 'quit' to exit)

You: Tell me a joke, then tell me the current time

Assistant: Sure! Here's a light joke for you: Why don't scientists trust atoms? Because they make up everything.

Now, let me get the current time for you.

**Calling Tool: get_current_time**

The current time is 18:49:31. Enjoy your day!

You:

社区

LM Studio Discord 服务器上与其他 LM Studio 用户聊天,讨论大型语言模型、硬件等。

本页面源代码可在 GitHub 上获取