文档
工具使用
工具使用使 LLM 能够通过 LM Studio 的 REST API(或通过任何 OpenAI 客户端)向 /v1/chat/completions
终端节点请求调用外部函数和 API。这将其功能远远扩展到文本输出之外。
🔔 工具使用需要 LM Studio 0.3.6 或更高版本,在此处获取
要从您自己的代码以编程方式使用 LM Studio,请将 LM Studio 作为本地服务器运行。
您可以从 LM Studio 中的“开发者”选项卡或通过 lms
CLI 开启服务器
lms server start
npx lmstudio install-cli
安装 lms
这将允许您通过类似 OpenAI 的 REST API 与 LM Studio 交互。有关 LM Studio 类似 OpenAI 的 API 的介绍,请参阅将 LM Studio 作为服务器运行。
您可以从 LM Studio 中的“聊天”或“开发者”选项卡加载模型,或通过 lms
CLI 加载模型
lms load
Curl
Python
工具使用描述了:
┌──────────────────────────┐ │ SETUP: LLM + Tool list │ └──────────┬───────────────┘ ▼ ┌──────────────────────────┐ │ Get user input │◄────┐ └──────────┬───────────────┘ │ ▼ │ ┌──────────────────────────┐ │ │ LLM prompted w/messages │ │ └──────────┬───────────────┘ │ ▼ │ Needs tools? │ │ │ │ Yes No │ │ │ │ ▼ └────────────┐ │ ┌─────────────┐ │ │ │Tool Response│ │ │ └──────┬──────┘ │ │ ▼ │ │ ┌─────────────┐ │ │ │Execute tools│ │ │ └──────┬──────┘ │ │ ▼ ▼ │ ┌─────────────┐ ┌───────────┐ │Add results │ │ Normal │ │to messages │ │ response │ └──────┬──────┘ └─────┬─────┘ │ ▲ └───────────────────────┘
当在请求主体的 tools
参数中给出函数定义时,LM Studio 通过 /v1/chat/completions
终端节点支持工具使用。工具被指定为函数定义的数组,描述了它们的参数和用法,例如:
它遵循与 OpenAI 的 函数调用 API 相同的格式,并且有望通过 OpenAI 客户端 SDK 工作。
在此示例流程中,我们将使用 lmstudio-community/Qwen2.5-7B-Instruct-GGUF 作为模型。
您向 LLM 提供工具列表。这些是模型可以请求调用的工具。例如:
// the list of tools is model-agnostic [ { "type": "function", "function": { "name": "get_delivery_date", "description": "Get the delivery date for a customer's order", "parameters": { "type": "object", "properties": { "order_id": { "type": "string" } }, "required": ["order_id"] } } } ]
此列表将被注入到模型的 system
提示中,具体取决于模型的聊天模板。对于 Qwen2.5-Instruct
,它看起来像这样:
<|im_start|>system You are Qwen, created by Alibaba Cloud. You are a helpful assistant. # Tools You may call one or more functions to assist with the user query. You are provided with function signatures within <tools></tools> XML tags: <tools> {"type": "function", "function": {"name": "get_delivery_date", "description": "Get the delivery date for a customer's order", "parameters": {"type": "object", "properties": {"order_id": {"type": "string"}}, "required": ["order_id"]}}} </tools> For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags: <tool_call> {"name": <function-name>, "arguments": <args-json-object>} </tool_call><|im_end|>
重要提示:模型只能请求调用这些工具,因为 LLM 无法直接调用函数、API 或任何其他工具。它们只能输出文本,然后可以解析这些文本以编程方式调用函数。
当被提示时,LLM 可以决定:
User: Get me the delivery date for order 123 Model: <tool_call> {"name": "get_delivery_date", "arguments": {"order_id": "123"}} </tool_call>
User: Hi Model: Hello! How can I assist you today?
LM Studio 将模型输出的文本解析为符合 OpenAI 标准的 chat.completion
响应对象。
tools
的权限,LM Studio 将尝试将工具调用解析到 response.choices[0].message.tool_calls
字段的 chat.completion
响应对象中。response.choices[0].message.content
字段。tool_calls
字段中。当您未按预期收到 tool_calls
时,这对于故障排除很有用。格式不正确的 Qwen2.5-Instruct
工具调用示例:<tool_call> ["name": "get_delivery_date", function: "date"] </tool_call>
请注意,括号不正确,并且调用不遵循
name, argument
格式。
您的代码解析 chat.completion
响应以检查模型发出的工具调用,然后使用模型指定的参数调用相应的工具。然后,您的代码添加:
到 messages
数组,以便发送回模型
# pseudocode, see examples for copy-paste snippets if response.has_tool_calls: for each tool_call: # Extract function name & args function_to_call = tool_call.name # e.g. "get_delivery_date" args = tool_call.arguments # e.g. {"order_id": "123"} # Execute the function result = execute_function(function_to_call, args) # Add result to conversation add_to_messages([ ASSISTANT_TOOL_CALL_MESSAGE, # The request to use the tool TOOL_RESULT_MESSAGE # The tool's response ]) else: # Normal response without tools add_to_messages(response.content)
然后使用更新后的消息数组再次提示 LLM,但不提供工具访问权限。这是因为:
# Example messages messages = [ {"role": "user", "content": "When will order 123 be delivered?"}, {"role": "assistant", "function_call": { "name": "get_delivery_date", "arguments": {"order_id": "123"} }}, {"role": "tool", "content": "2024-03-15"}, ] response = client.chat.completions.create( model="lmstudio-community/qwen2.5-7b-instruct", messages=messages )
此调用之后的 response.choices[0].message.content
字段可能类似于:
Your order #123 will be delivered on March 15th, 2024
循环在流程的步骤 2 处继续
注意:这是工具使用的 pedantic
流程。但是,您当然可以尝试此流程以最适合您的用例。
通过 LM Studio,所有模型都至少支持一定程度的工具使用。
但是,目前有两种级别的支持可能会影响体验质量:原生和默认。
具有原生工具使用支持的模型在应用程序中将带有锤子徽章,并且在工具使用场景中通常表现更好。
“原生”工具使用支持意味着:
tools
数组格式化到系统提示中,并告知模型如何格式化工具调用chat.completion
对象目前在 LM Studio 中具有原生工具使用支持的模型(可能会发生变化):
GGUF
lmstudio-community/Qwen2.5-7B-Instruct-GGUF (4.68 GB)MLX
mlx-community/Qwen2.5-7B-Instruct-4bit (4.30 GB)GGUF
lmstudio-community/Meta-Llama-3.1-8B-Instruct-GGUF (4.92 GB)MLX
mlx-community/Meta-Llama-3.1-8B-Instruct-8bit (8.54 GB)GGUF
bartowski/Ministral-8B-Instruct-2410-GGUF (4.67 GB)MLX
mlx-community/Ministral-8B-Instruct-2410-4bit (4.67 GB GB)“默认”工具使用支持意味着或者:
在底层,默认工具使用通过以下方式工作:
tool
角色消息转换为 user
角色,以便与没有 tool
角色的聊天模板兼容assistant
角色 tool_calls
转换为默认工具调用格式结果将因模型而异。
您可以通过在终端中运行 lms log stream
来查看默认格式,然后向不具有原生工具使用支持的模型发送带有 tools
的聊天完成请求。默认格式可能会发生变化。
→ % lms log stream Streaming logs from LM Studio timestamp: 11/13/2024, 9:35:15 AM type: llm.prediction.input modelIdentifier: gemma-2-2b-it modelPath: lmstudio-community/gemma-2-2b-it-GGUF/gemma-2-2b-it-Q4_K_M.gguf input: "<start_of_turn>system You are a tool-calling AI. You can request calls to available tools with this EXACT format: [TOOL_REQUEST]{"name": "tool_name", "arguments": {"param1": "value1"}}[END_TOOL_REQUEST] AVAILABLE TOOLS: { "type": "toolArray", "tools": [ { "type": "function", "function": { "name": "get_delivery_date", "description": "Get the delivery date for a customer's order", "parameters": { "type": "object", "properties": { "order_id": { "type": "string" } }, "required": [ "order_id" ] } } } ] } RULES: - Only use tools from AVAILABLE TOOLS - Include all required arguments - Use one [TOOL_REQUEST] block per tool - Never use [TOOL_RESULT] - If you decide to call one or more tools, there should be no other text in your message Examples: "Check Paris weather" [TOOL_REQUEST]{"name": "get_weather", "arguments": {"location": "Paris"}}[END_TOOL_REQUEST] "Send email to John about meeting and open browser" [TOOL_REQUEST]{"name": "send_email", "arguments": {"to": "John", "subject": "meeting"}}[END_TOOL_REQUEST] [TOOL_REQUEST]{"name": "open_browser", "arguments": {}}[END_TOOL_REQUEST] Respond conversationally if no matching tools exist.<end_of_turn> <start_of_turn>user Get me delivery date for order 123<end_of_turn> <start_of_turn>model "
如果模型完全按照此格式调用工具,即:
[TOOL_REQUEST]{"name": "get_delivery_date", "arguments": {"order_id": "123"}}[END_TOOL_REQUEST]
那么 LM Studio 将能够像原生支持的模型一样,将这些工具调用解析为 chat.completions
对象。
所有不具有原生工具使用支持的模型都将具有默认工具使用支持。
curl
的示例此示例演示了模型使用 curl
实用程序请求工具调用。
要在 Mac 或 Linux 上运行此示例,请使用任何终端。在 Windows 上,使用 Git Bash。
curl https://127.0.0.1:1234/v1/chat/completions \ -H "Content-Type: application/json" \ -d '{ "model": "lmstudio-community/qwen2.5-7b-instruct", "messages": [{"role": "user", "content": "What dell products do you have under $50 in electronics?"}], "tools": [ { "type": "function", "function": { "name": "search_products", "description": "Search the product catalog by various criteria. Use this whenever a customer asks about product availability, pricing, or specifications.", "parameters": { "type": "object", "properties": { "query": { "type": "string", "description": "Search terms or product name" }, "category": { "type": "string", "description": "Product category to filter by", "enum": ["electronics", "clothing", "home", "outdoor"] }, "max_price": { "type": "number", "description": "Maximum price in dollars" } }, "required": ["query"], "additionalProperties": false } } } ] }'
/v1/chat/completions
识别的所有参数都将得到遵守,可用工具的数组应在 tools
字段中提供。
如果模型确定用户消息最好通过工具调用来完成,则工具调用请求对象的数组将在响应字段 choices[0].message.tool_calls
中提供。
顶级响应对象的 finish_reason
字段也将填充 "tool_calls"
。
上述 curl
请求的示例响应将如下所示:
{ "id": "chatcmpl-gb1t1uqzefudice8ntxd9i", "object": "chat.completion", "created": 1730913210, "model": "lmstudio-community/qwen2.5-7b-instruct", "choices": [ { "index": 0, "logprobs": null, "finish_reason": "tool_calls", "message": { "role": "assistant", "tool_calls": [ { "id": "365174485", "type": "function", "function": { "name": "search_products", "arguments": "{\"query\":\"dell\",\"category\":\"electronics\",\"max_price\":50}" } } ] } } ], "usage": { "prompt_tokens": 263, "completion_tokens": 34, "total_tokens": 297 }, "system_fingerprint": "lmstudio-community/qwen2.5-7b-instruct" }
用通俗的英语来说,上面的响应可以被认为是模型在说:
“请调用
search_products
函数,参数为:
query
参数为 'dell',category
参数为 'electronics',max_price
参数为 '50',并将结果返回给我”
需要解析 tool_calls
字段以调用实际的函数/API。以下示例演示了如何操作。
python
的示例当与 python 等编程语言配对时,工具使用会大放异彩,您可以在其中实现 tools
字段中指定的函数,以便在模型请求时以编程方式调用它们。
下面是一个简单的单轮(模型仅被调用一次)示例,演示如何启用模型调用名为 say_hello
的函数,该函数在控制台中打印问候语。
single-turn-example.py
from openai import OpenAI # Connect to LM Studio client = OpenAI(base_url="https://127.0.0.1:1234/v1", api_key="lm-studio") # Define a simple function def say_hello(name: str) → str: print(f"Hello, {name}!") # Tell the AI about our function tools = [ { "type": "function", "function": { "name": "say_hello", "description": "Says hello to someone", "parameters": { "type": "object", "properties": { "name": { "type": "string", "description": "The person's name" } }, "required": ["name"] } } } ] # Ask the AI to use our function response = client.chat.completions.create( model="lmstudio-community/qwen2.5-7b-instruct", messages=[{"role": "user", "content": "Can you say hello to Bob the Builder?"}], tools=tools ) # Get the name the AI wants to use a tool to say hello to # (Assumes the AI has requested a tool call and that tool call is say_hello) tool_call = response.choices[0].message.tool_calls[0] name = eval(tool_call.function.arguments)["name"] # Actually call the say_hello function say_hello(name) # Prints: Hello, Bob the Builder!
从控制台运行此脚本应产生如下结果:
→ % python single-turn-example.py Hello, Bob the Builder!
在以下代码中修改名称:
messages=[{"role": "user", "content": "Can you say hello to Bob the Builder?"}]
以查看模型使用不同的名称调用 say_hello
函数。
现在来看一个稍微复杂的示例。
在此示例中,我们将:
get_delivery_date
函数multi-turn-example.py
(点击展开)from datetime import datetime, timedelta import json import random from openai import OpenAI # Point to the local server client = OpenAI(base_url="https://127.0.0.1:1234/v1", api_key="lm-studio") model = "lmstudio-community/qwen2.5-7b-instruct" def get_delivery_date(order_id: str) → datetime: # Generate a random delivery date between today and 14 days from now # in a real-world scenario, this function would query a database or API today = datetime.now() random_days = random.randint(1, 14) delivery_date = today + timedelta(days=random_days) print( f"\nget_delivery_date function returns delivery date:\n\n{delivery_date}", flush=True, ) return delivery_date tools = [ { "type": "function", "function": { "name": "get_delivery_date", "description": "Get the delivery date for a customer's order. Call this whenever you need to know the delivery date, for example when a customer asks 'Where is my package'", "parameters": { "type": "object", "properties": { "order_id": { "type": "string", "description": "The customer's order ID.", }, }, "required": ["order_id"], "additionalProperties": False, }, }, } ] messages = [ { "role": "system", "content": "You are a helpful customer support assistant. Use the supplied tools to assist the user.", }, { "role": "user", "content": "Give me the delivery date and time for order number 1017", }, ] # LM Studio response = client.chat.completions.create( model=model, messages=messages, tools=tools, ) print("\nModel response requesting tool call:\n", flush=True) print(response, flush=True) # Extract the arguments for get_delivery_date # Note this code assumes we have already determined that the model generated a function call. tool_call = response.choices[0].message.tool_calls[0] arguments = json.loads(tool_call.function.arguments) order_id = arguments.get("order_id") # Call the get_delivery_date function with the extracted order_id delivery_date = get_delivery_date(order_id) assistant_tool_call_request_message = { "role": "assistant", "tool_calls": [ { "id": response.choices[0].message.tool_calls[0].id, "type": response.choices[0].message.tool_calls[0].type, "function": response.choices[0].message.tool_calls[0].function, } ], } # Create a message containing the result of the function call function_call_result_message = { "role": "tool", "content": json.dumps( { "order_id": order_id, "delivery_date": delivery_date.strftime("%Y-%m-%d %H:%M:%S"), } ), "tool_call_id": response.choices[0].message.tool_calls[0].id, } # Prepare the chat completion call payload completion_messages_payload = [ messages[0], messages[1], assistant_tool_call_request_message, function_call_result_message, ] # Call the OpenAI API's chat completions endpoint to send the tool call result back to the model # LM Studio response = client.chat.completions.create( model=model, messages=completion_messages_payload, ) print("\nFinal model response with knowledge of the tool call result:\n", flush=True) print(response.choices[0].message.content, flush=True)
从控制台运行此脚本应产生如下结果:
→ % python multi-turn-example.py Model response requesting tool call: ChatCompletion(id='chatcmpl-wwpstqqu94go4hvclqnpwn', choices=[Choice(finish_reason='tool_calls', index=0, logprobs=None, message=ChatCompletionMessage(content=None, refusal=None, role='assistant', function_call=None, tool_calls=[ChatCompletionMessageToolCall(id='377278620', function=Function(arguments='{"order_id":"1017"}', name='get_delivery_date'), type='function')]))], created=1730916196, model='lmstudio-community/qwen2.5-7b-instruct', object='chat.completion', service_tier=None, system_fingerprint='lmstudio-community/qwen2.5-7b-instruct', usage=CompletionUsage(completion_tokens=24, prompt_tokens=223, total_tokens=247, completion_tokens_details=None, prompt_tokens_details=None)) get_delivery_date function returns delivery date: 2024-11-19 13:03:17.773298 Final model response with knowledge of the tool call result: Your order number 1017 is scheduled for delivery on November 19, 2024, at 13:03 PM.
在上述原则的基础上,我们可以将 LM Studio 模型与本地定义的函数结合起来,创建一个“代理”——一个将语言模型与自定义函数配对的系统,以理解请求并执行超出基本文本生成的操作。
以下示例中的代理可以:
agent-chat-example.py
(点击展开)import json from urllib.parse import urlparse import webbrowser from datetime import datetime import os from openai import OpenAI # Point to the local server client = OpenAI(base_url="https://127.0.0.1:1234/v1", api_key="lm-studio") model = "lmstudio-community/qwen2.5-7b-instruct" def is_valid_url(url: str) → bool: try: result = urlparse(url) return bool(result.netloc) # Returns True if there's a valid network location except Exception: return False def open_safe_url(url: str) → dict: # List of allowed domains (expand as needed) SAFE_DOMAINS = { "lmstudio.ai", "github.com", "google.com", "wikipedia.org", "weather.com", "stackoverflow.com", "python.org", "docs.python.org", } try: # Add http:// if no scheme is present if not url.startswith(('http://', 'https://')): url = 'http://' + url # Validate URL format if not is_valid_url(url): return {"status": "error", "message": f"Invalid URL format: {url}"} # Parse the URL and check domain parsed_url = urlparse(url) domain = parsed_url.netloc.lower() base_domain = ".".join(domain.split(".")[-2:]) if base_domain in SAFE_DOMAINS: webbrowser.open(url) return {"status": "success", "message": f"Opened {url} in browser"} else: return { "status": "error", "message": f"Domain {domain} not in allowed list", } except Exception as e: return {"status": "error", "message": str(e)} def get_current_time() → dict: """Get the current system time with timezone information""" try: current_time = datetime.now() timezone = datetime.now().astimezone().tzinfo formatted_time = current_time.strftime("%Y-%m-%d %H:%M:%S %Z") return { "status": "success", "time": formatted_time, "timezone": str(timezone), "timestamp": current_time.timestamp(), } except Exception as e: return {"status": "error", "message": str(e)} def analyze_directory(path: str = ".") → dict: """Count and categorize files in a directory""" try: stats = { "total_files": 0, "total_dirs": 0, "file_types": {}, "total_size_bytes": 0, } for entry in os.scandir(path): if entry.is_file(): stats["total_files"] += 1 ext = os.path.splitext(entry.name)[1].lower() or "no_extension" stats["file_types"][ext] = stats["file_types"].get(ext, 0) + 1 stats["total_size_bytes"] += entry.stat().st_size elif entry.is_dir(): stats["total_dirs"] += 1 # Add size of directory contents for root, _, files in os.walk(entry.path): for file in files: try: stats["total_size_bytes"] += os.path.getsize(os.path.join(root, file)) except (OSError, FileNotFoundError): continue return {"status": "success", "stats": stats, "path": os.path.abspath(path)} except Exception as e: return {"status": "error", "message": str(e)} tools = [ { "type": "function", "function": { "name": "open_safe_url", "description": "Open a URL in the browser if it's deemed safe", "parameters": { "type": "object", "properties": { "url": { "type": "string", "description": "The URL to open", }, }, "required": ["url"], }, }, }, { "type": "function", "function": { "name": "get_current_time", "description": "Get the current system time with timezone information", "parameters": { "type": "object", "properties": {}, "required": [], }, }, }, { "type": "function", "function": { "name": "analyze_directory", "description": "Analyze the contents of a directory, counting files and folders", "parameters": { "type": "object", "properties": { "path": { "type": "string", "description": "The directory path to analyze. Defaults to current directory if not specified.", }, }, "required": [], }, }, }, ] def process_tool_calls(response, messages): """Process multiple tool calls and return the final response and updated messages""" # Get all tool calls from the response tool_calls = response.choices[0].message.tool_calls # Create the assistant message with tool calls assistant_tool_call_message = { "role": "assistant", "tool_calls": [ { "id": tool_call.id, "type": tool_call.type, "function": tool_call.function, } for tool_call in tool_calls ], } # Add the assistant's tool call message to the history messages.append(assistant_tool_call_message) # Process each tool call and collect results tool_results = [] for tool_call in tool_calls: # For functions with no arguments, use empty dict arguments = ( json.loads(tool_call.function.arguments) if tool_call.function.arguments.strip() else {} ) # Determine which function to call based on the tool call name if tool_call.function.name == "open_safe_url": result = open_safe_url(arguments["url"]) elif tool_call.function.name == "get_current_time": result = get_current_time() elif tool_call.function.name == "analyze_directory": path = arguments.get("path", ".") result = analyze_directory(path) else: # llm tried to call a function that doesn't exist, skip continue # Add the result message tool_result_message = { "role": "tool", "content": json.dumps(result), "tool_call_id": tool_call.id, } tool_results.append(tool_result_message) messages.append(tool_result_message) # Get the final response final_response = client.chat.completions.create( model=model, messages=messages, ) return final_response def chat(): messages = [ { "role": "system", "content": "You are a helpful assistant that can open safe web links, tell the current time, and analyze directory contents. Use these capabilities whenever they might be helpful.", } ] print( "Assistant: Hello! I can help you open safe web links, tell you the current time, and analyze directory contents. What would you like me to do?" ) print("(Type 'quit' to exit)") while True: # Get user input user_input = input("\nYou: ").strip() # Check for quit command if user_input.lower() == "quit": print("Assistant: Goodbye!") break # Add user message to conversation messages.append({"role": "user", "content": user_input}) try: # Get initial response response = client.chat.completions.create( model=model, messages=messages, tools=tools, ) # Check if the response includes tool calls if response.choices[0].message.tool_calls: # Process all tool calls and get final response final_response = process_tool_calls(response, messages) print("\nAssistant:", final_response.choices[0].message.content) # Add assistant's final response to messages messages.append( { "role": "assistant", "content": final_response.choices[0].message.content, } ) else: # If no tool call, just print the response print("\nAssistant:", response.choices[0].message.content) # Add assistant's response to messages messages.append( { "role": "assistant", "content": response.choices[0].message.content, } ) except Exception as e: print(f"\nAn error occurred: {str(e)}") exit(1) if __name__ == "__main__": chat()
从控制台运行此脚本将允许您与代理聊天
→ % python agent-example.py Assistant: Hello! I can help you open safe web links, tell you the current time, and analyze directory contents. What would you like me to do? (Type 'quit' to exit) You: What time is it? Assistant: The current time is 14:11:40 (EST) as of November 6, 2024. You: What time is it now? Assistant: The current time is 14:13:59 (EST) as of November 6, 2024. You: Open lmstudio.ai Assistant: The link to lmstudio.ai has been opened in your default web browser. You: What's in my current directory? Assistant: Your current directory at `/Users/matt/project` contains a total of 14 files and 8 directories. Here's the breakdown: - Files without an extension: 3 - `.mjs` files: 2 - `.ts` (TypeScript) files: 3 - Markdown (`md`) file: 1 - JSON files: 4 - TOML file: 1 The total size of these items is 1,566,990,604 bytes. You: Thank you! Assistant: You're welcome! If you have any other questions or need further assistance, feel free to ask. You:
当通过 /v1/chat/completions
流式传输时(stream=true
),工具调用以块的形式发送。函数名称和参数通过 chunk.choices[0].delta.tool_calls.function.name
和 chunk.choices[0].delta.tool_calls.function.arguments
分段发送。
例如,要调用 get_current_weather(location="San Francisco")
,每个 chunk.choices[0].delta.tool_calls[0]
对象中流式传输的 ChoiceDeltaToolCall
将如下所示:
ChoiceDeltaToolCall(index=0, id='814890118', function=ChoiceDeltaToolCallFunction(arguments='', name='get_current_weather'), type='function') ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='{"', name=None), type=None) ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='location', name=None), type=None) ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='":"', name=None), type=None) ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='San Francisco', name=None), type=None) ChoiceDeltaToolCall(index=0, id=None, function=ChoiceDeltaToolCallFunction(arguments='"}', name=None), type=None)
必须在整个流中累积这些块,以形成完整的函数签名以供执行。
以下示例展示了如何通过 /v1/chat/completions
流式传输终端节点(stream=true
)创建简单的工具增强型聊天机器人。
tool-streaming-chatbot.py
(点击展开)from openai import OpenAI import time client = OpenAI(base_url="http://127.0.0.1:1234/v1", api_key="lm-studio") MODEL = "lmstudio-community/qwen2.5-7b-instruct" TIME_TOOL = { "type": "function", "function": { "name": "get_current_time", "description": "Get the current time, only if asked", "parameters": {"type": "object", "properties": {}}, }, } def get_current_time(): return {"time": time.strftime("%H:%M:%S")} def process_stream(stream, add_assistant_label=True): """Handle streaming responses from the API""" collected_text = "" tool_calls = [] first_chunk = True for chunk in stream: delta = chunk.choices[0].delta # Handle regular text output if delta.content: if first_chunk: print() if add_assistant_label: print("Assistant:", end=" ", flush=True) first_chunk = False print(delta.content, end="", flush=True) collected_text += delta.content # Handle tool calls elif delta.tool_calls: for tc in delta.tool_calls: if len(tool_calls) <= tc.index: tool_calls.append({ "id": "", "type": "function", "function": {"name": "", "arguments": ""} }) tool_calls[tc.index] = { "id": (tool_calls[tc.index]["id"] + (tc.id or "")), "type": "function", "function": { "name": (tool_calls[tc.index]["function"]["name"] + (tc.function.name or "")), "arguments": (tool_calls[tc.index]["function"]["arguments"] + (tc.function.arguments or "")) } } return collected_text, tool_calls def chat_loop(): messages = [] print("Assistant: Hi! I am an AI agent empowered with the ability to tell the current time (Type 'quit' to exit)") while True: user_input = input("\nYou: ").strip() if user_input.lower() == "quit": break messages.append({"role": "user", "content": user_input}) # Get initial response response_text, tool_calls = process_stream( client.chat.completions.create( model=MODEL, messages=messages, tools=[TIME_TOOL], stream=True, temperature=0.2 ) ) if not tool_calls: print() text_in_first_response = len(response_text) > 0 if text_in_first_response: messages.append({"role": "assistant", "content": response_text}) # Handle tool calls if any if tool_calls: tool_name = tool_calls[0]["function"]["name"] print() if not text_in_first_response: print("Assistant:", end=" ", flush=True) print(f"**Calling Tool: {tool_name}**") messages.append({"role": "assistant", "tool_calls": tool_calls}) # Execute tool calls for tool_call in tool_calls: if tool_call["function"]["name"] == "get_current_time": result = get_current_time() messages.append({ "role": "tool", "content": str(result), "tool_call_id": tool_call["id"] }) # Get final response after tool execution final_response, _ = process_stream( client.chat.completions.create( model=MODEL, messages=messages, stream=True ), add_assistant_label=False ) if final_response: print() messages.append({"role": "assistant", "content": final_response}) if __name__ == "__main__": chat_loop()
您可以通过从控制台运行此脚本来与机器人聊天
→ % python tool-streaming-chatbot.py Assistant: Hi! I am an AI agent empowered with the ability to tell the current time (Type 'quit' to exit) You: Tell me a joke, then tell me the current time Assistant: Sure! Here's a light joke for you: Why don't scientists trust atoms? Because they make up everything. Now, let me get the current time for you. **Calling Tool: get_current_time** The current time is 18:49:31. Enjoy your day! You:
在 LM Studio Discord 服务器上与其他 LM Studio 用户聊天,讨论 LLM、硬件等。